**************************
:py:mod:`wildboar.explain`
**************************
.. py:module:: wildboar.explain
.. autoapi-nested-parse::
Explanation methods for classifiers and regressors.
..
!! processed by numpydoc !!
Classes
-------
.. autoapisummary::
wildboar.explain.AmplitudeImportance
wildboar.explain.FrequencyImportance
wildboar.explain.IntervalImportance
wildboar.explain.ShapeletImportance
Functions
---------
.. autoapisummary::
wildboar.explain.plot_importances
.. raw:: html
.. py:class:: AmplitudeImportance(scoring=None, n_intervals='sqrt', window=None, binning='normal', n_bins=4, n_repeat=1, random_state=None)
Compute the importance of equi-probable amplitude intervals.
The implementation uses
:class:`transform.SAX` to discretize the time series and then for each bin permute
the samples along that bin.
..
!! processed by numpydoc !!
.. py:method:: fit_explain(estimator, x=None, y=None, **kwargs)
Fit and return the explanation.
:Parameters:
**estimator** : Estimator
The estimator to explain.
**x** : time-series, optional
The input time series.
**y** : array-like of shape (n_samples, ), optional
The labels.
**\*\*kwargs** : dict, optional
Optional extra arguments.
:Returns:
ndarray
The explanation.
..
!! processed by numpydoc !!
.. py:method:: get_metadata_routing()
Get metadata routing of this object.
Please check :ref:`User Guide ` on how the routing
mechanism works.
:Returns:
**routing** : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating
routing information.
..
!! processed by numpydoc !!
.. py:method:: get_params(deep=True)
Get parameters for this estimator.
:Parameters:
**deep** : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
:Returns:
**params** : dict
Parameter names mapped to their values.
..
!! processed by numpydoc !!
.. py:method:: plot(x=None, y=None, *, ax=None, n_samples=100, scoring=None, preprocess=True, k=None, show_bins=False, show_grid=True)
Plot the importances.
If x is given, the importances are plotted over the samples optionally
labeling each sample using the supplied labels. If x is not give, the
importances are plotted as one or more boxplots.
:Parameters:
**x** : array-like of shape (n_samples, n_timesteps), optional
The samples.
**y** : array-like of shape (n_samples, ), optional
The labels.
**ax** : Axes, optional
Axes to plot. If ax is set, x is None and scoring is None, the number of
axes must be the same as the number of scorers.
**n_samples** : int or float, optional
The number of samples to plot, set to `None` to plot all.
**scoring** : str, optional
The scoring to plot if multiple scorers were used when fitting.
**preprocess** : bool, optional
Preprocess the time series to align with the bins, ignored if x is not None.
**k** : int or float, optional
The number of top bins to plot, ignored if x is not None.
- if int, the specified number of bins are shown
- if float, a fraction of the number of bins are shown.
**show_bins** : bool, optional
Annotate the plot with the index of the bin, ignored if x is not None.
**show_grid** : bool, optional
Annotate the plot with the bin thresholds, ignored if x is not None.
:Returns:
**ax** : Axis
The axis.
**mappable** : ScalarMappable, optional
Return the mappable used to plot the colorbar.
Only returned if ax is not None and x is not None.
..
!! processed by numpydoc !!
.. py:method:: set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``__`` so that it's
possible to update each component of a nested object.
:Parameters:
**\*\*params** : dict
Estimator parameters.
:Returns:
**self** : estimator instance
Estimator instance.
..
!! processed by numpydoc !!
.. py:class:: FrequencyImportance(scoring=None, n_repeat=5, random_state=None, n_bands=10, spectrum='amplitude', growth_factor=np.e)
Explainer to evaluate feature importance based on frequency bands.
This class implements a frequency-based importance measure by permuting values
within frequency bands obtained from the Fourier transform of time series data.
It extends PermuteImportance to analyze the impact of different frequency
components on model predictions.
:Parameters:
**scoring** : str, callable, or None, optional
Scoring metric to evaluate importance. If None, uses estimator's score method.
**n_repeat** : int, optional
Number of times to permute each frequency band.
**random_state** : int, RandomState instance or None, optional
Controls randomization for permutations.
**n_bands** : int, optional
Number of frequency bands to analyze.
**spectrum** : {"amplitude", "phase"}, optional
Whether to permute amplitude components or to permute phase components.
**growth_factor** : float, optional
Controls growth of frequency band sizes:
- growth_factor > 1: exponential growth (more detail at lower frequencies)
- growth_factor = 1: linear growth (equal-sized bands)
- growth_factor < 1: logarithmic decay (more detail at higher frequencies)
Defaults to `np.e`.
:Attributes:
**components_** : list of tuples
The frequency bands used for permutation, as (start, end) indices.
**importances_** : ImportanceContainer
Contains the calculated feature importance scores.
**n_timesteps_in_** : int
Number of timesteps in the input data.
.. seealso::
:obj:`PermuteImportance`
Base class for permutation-based importance.
.. rubric:: Notes
The frequency bands are constructed by dividing the frequency domain into windows,
with the size of each window controlled by the growth_factor parameter. This allows
for analyzing different scales of temporal patterns in the data.
..
!! processed by numpydoc !!
.. py:method:: fit_explain(estimator, x=None, y=None, **kwargs)
Fit and return the explanation.
:Parameters:
**estimator** : Estimator
The estimator to explain.
**x** : time-series, optional
The input time series.
**y** : array-like of shape (n_samples, ), optional
The labels.
**\*\*kwargs** : dict, optional
Optional extra arguments.
:Returns:
ndarray
The explanation.
..
!! processed by numpydoc !!
.. py:method:: get_metadata_routing()
Get metadata routing of this object.
Please check :ref:`User Guide ` on how the routing
mechanism works.
:Returns:
**routing** : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating
routing information.
..
!! processed by numpydoc !!
.. py:method:: get_params(deep=True)
Get parameters for this estimator.
:Parameters:
**deep** : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
:Returns:
**params** : dict
Parameter names mapped to their values.
..
!! processed by numpydoc !!
.. py:method:: plot(X=None, y=None, ax=None, k=None, sample_spacing=1, jitter=False)
Plot the explanation.
:Parameters:
**x** : array-like, optional
Optional imput samples.
**y** : array-like, optional
Optional target labels.
**ax** : Axes, optional
Optional axes to plot to.
:Returns:
Axes
The axes object.
..
!! processed by numpydoc !!
.. py:method:: set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``__`` so that it's
possible to update each component of a nested object.
:Parameters:
**\*\*params** : dict
Estimator parameters.
:Returns:
**self** : estimator instance
Estimator instance.
..
!! processed by numpydoc !!
.. py:class:: IntervalImportance(*, scoring=None, n_repeat=5, n_intervals='sqrt', window=None, random_state=None)
Interval importance for time series.
:Parameters:
**scoring** : str, list, dict or callable, optional
The scoring function. By default the estimators score function is used.
**n_repeat** : int, optional
The number of repeated permutations.
**n_intervals** : str, optional
The number of intervals.
- if "sqrt", the number of intervals is the square root of n_timestep.
- if "log2", the number of intervals is the log2 of n_timestep.
- if int, exact number of intervals.
**window** : int, optional
The window size. If specicied, n_intervals is ignored and the number of
intervals is computed such that each interval is (at least) of size window.
**random_state** : int or RandomState
- If `int`, `random_state` is the seed used by the random number generator
- If `RandomState` instance, `random_state` is the random number generator
- If `None`, the random number generator is the `RandomState` instance used
by `np.random`.
:Attributes:
**importances_** : dict or Importance
The importance scores for each interval. If dict, one value per scoring
function.
**components_** : ndarray of shape (n_intervals, 2)
The interval start and end positions.
..
!! processed by numpydoc !!
.. py:method:: fit_explain(estimator, x=None, y=None, **kwargs)
Fit and return the explanation.
:Parameters:
**estimator** : Estimator
The estimator to explain.
**x** : time-series, optional
The input time series.
**y** : array-like of shape (n_samples, ), optional
The labels.
**\*\*kwargs** : dict, optional
Optional extra arguments.
:Returns:
ndarray
The explanation.
..
!! processed by numpydoc !!
.. py:method:: get_metadata_routing()
Get metadata routing of this object.
Please check :ref:`User Guide ` on how the routing
mechanism works.
:Returns:
**routing** : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating
routing information.
..
!! processed by numpydoc !!
.. py:method:: get_params(deep=True)
Get parameters for this estimator.
:Parameters:
**deep** : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
:Returns:
**params** : dict
Parameter names mapped to their values.
..
!! processed by numpydoc !!
.. py:method:: plot(x=None, y=None, *, ax=None, scoring=None, k=None, n_samples=100, show_grid=True)
Plot the explanation.
:Parameters:
**x** : array-like, optional
Optional imput samples.
**y** : array-like, optional
Optional target labels.
**ax** : Axes, optional
Optional axes to plot to.
:Returns:
Axes
The axes object.
..
!! processed by numpydoc !!
.. py:method:: set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``__`` so that it's
possible to update each component of a nested object.
:Parameters:
**\*\*params** : dict
Estimator parameters.
:Returns:
**self** : estimator instance
Estimator instance.
..
!! processed by numpydoc !!
.. py:class:: ShapeletImportance(scoring=None, n_repeat=1, n_shapelets=10, min_shapelet_size=0.0, max_shapelet_size=1.0, coverage_probability=None, variability=1, metric='euclidean', metric_params=None, random_state=None)
Compute the importance of shapelets.
The importance is given by permuting time series sections with
the minimum distance to shapelets.
:Parameters:
**scoring** : str, list, dict or callable, optional
The scoring function. By default the estimators score function is used.
**n_repeat** : int, optional
The number of repeated permutations.
**n_shapelets** : int, optional
The number of shapelets to sample for the explanation.
**min_shapelet_size** : float, optional
The minimum size of shapelets used for explanation.
**max_shapelet_size** : float, optional
The maximum size of shapelets used for explanation.
**coverage_probability** : float, optional
The probability that a time step is covered by a
shapelet, in the range 0 < coverage_probability <= 1.
- For larger `coverage_probability`, we get larger shapelets.
- For smaller `coverage_probability`, we get shorter shapelets.
**variability** : float, optional
Controls the shape of the Beta distribution used to
sample shapelets. Defaults to 1.
- Higher `variability` creates more uniform intervals.
- Lower `variability` creates more variable intervals sizes.
**metric** : str, optional
The metric.
**metric_params** : str, optional
The metric parameters.
**random_state** : int or RandomState, optional
Controls the random resampling of the original dataset.
- If `int`, `random_state` is the seed used by the
random number generator.
- If :class:`numpy.random.RandomState` instance, `random_state` is the
random number generator.
- If `None`, the random number generator is the
:class:`numpy.random.RandomState` instance used by
:func:`numpy.random`.
:Attributes:
**components** : ndarray
The shapelets
..
!! processed by numpydoc !!
.. py:method:: fit_explain(estimator, x=None, y=None, **kwargs)
Fit and return the explanation.
:Parameters:
**estimator** : Estimator
The estimator to explain.
**x** : time-series, optional
The input time series.
**y** : array-like of shape (n_samples, ), optional
The labels.
**\*\*kwargs** : dict, optional
Optional extra arguments.
:Returns:
ndarray
The explanation.
..
!! processed by numpydoc !!
.. py:method:: get_metadata_routing()
Get metadata routing of this object.
Please check :ref:`User Guide ` on how the routing
mechanism works.
:Returns:
**routing** : MetadataRequest
A :class:`~sklearn.utils.metadata_routing.MetadataRequest` encapsulating
routing information.
..
!! processed by numpydoc !!
.. py:method:: get_params(deep=True)
Get parameters for this estimator.
:Parameters:
**deep** : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
:Returns:
**params** : dict
Parameter names mapped to their values.
..
!! processed by numpydoc !!
.. py:method:: plot(X=None, y=None, k=None, scoring=None, kernel_scale=0.25, ax=None)
Plot the explanation.
:Parameters:
**x** : array-like, optional
Optional imput samples.
**y** : array-like, optional
Optional target labels.
**ax** : Axes, optional
Optional axes to plot to.
:Returns:
Axes
The axes object.
..
!! processed by numpydoc !!
.. py:method:: set_params(**params)
Set the parameters of this estimator.
The method works on simple estimators as well as on nested objects
(such as :class:`~sklearn.pipeline.Pipeline`). The latter have
parameters of the form ``__`` so that it's
possible to update each component of a nested object.
:Parameters:
**\*\*params** : dict
Estimator parameters.
:Returns:
**self** : estimator instance
Estimator instance.
..
!! processed by numpydoc !!
.. py:function:: plot_importances(importances, ax=None, labels=None)
Plot the importances as a boxplot.
:Parameters:
**importances** : Importance or dict
The importances.
**ax** : Axes, optional
The axes to plot. If importances is dict, ax must contain at least
len(importances) Axes objects.
**labels** : array-like, optional
The labels for the importances.
:Returns:
Axes
The plotted Axes.
..
!! processed by numpydoc !!