wildboar.annotate
#
Annotation of time series.
See the annotation section in the User Guide for more details and examples.
Package Contents#
Functions#
|
Find motifs. |
|
Find change regimes in a time series. |
- wildboar.annotate.motifs(x, mp=None, *, window='auto', exclude=0.2, max_distance='auto', max_neighbours=10, min_neighbours=1, max_motif=1, return_distance=False)[source]#
Find motifs.
- Parameters:
- xarray-like of shape (n_samples, n_timestep)
The time series
- mpndarray or shape (n_samples, profile_size), optional
The matrix profile. The matrix profile is computed if None.
- window“auto”, int or float, optional
The window size of the matrix profile.
if “auto” the window is math.ceil(0.1 * n_timesteps) if mp=None, and the window of the matrix profile if mp is not None.
if float, a fraction of n_timestep
if int, the exact window size
- excludefloat, optional
The size of the exclusion zone.
- max_distancestr, optional
The maximum distance between motifs.
- max_neighboursint, optional
The maximum number of neighbours
- min_neighboursint, optional
The minimum number of neighbours
- max_motifint, optional
The maximum number of motifs to return.
- return_distancebool, optional
Return the distance from main to neighbours
- Returns:
- motif_indicieslist
List of arrays of motif neighbour indicies
- motif_distancelist, optional
List of arrays of distance from motif to neighbours
See also
wildboar.distance.subsequence_match
find subsequence matches
wildboar.distance.matrix_profile
compute the matrix profile
References
- Yeh, C. C. M. et al. (2016).
Matrix profile I: All pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In 2016 IEEE 16th international conference on data mining (ICDM)
- wildboar.annotate.segment(x=None, *, mpi=None, n_segments=1, window=0.1, exclude=0.2, boundry=1.0, return_arc_curve=False)[source]#
Find change regimes in a time series.
- Parameters:
- xarray-like of shape (n_samples, n_timestep) or (n_timestep, ), optional
The time series. If x is given, the matrix profile of x is computed.
- mpiarray-like of shape (n_samples, profile_size) or (profile_size), optional
The matrix profile index. Must be given unless x is given.
- n_segmentsint, optional
The number of segmentations to identify
- windowint or float, optional
The window size. The window parameter is ignored if mpi is not None.
if float, a fraction of n_timestep
if int, the exact window size
- excludefloat, optional
The self-join exclusion for the matrix profile. Ignored if mpi is given.
- boundryfloat, optional
Ignore the region around each identified segmentation. Expressed as a fraction of window.
- return_arc_curvebool, optional
Return the arc curve.
- Returns:
- segmentsndarray of shape (n_samples, n_segments), (n_segments) or int
The start index of a segment
- arc_curvesndarray of shape (n_samples, profile_size) or (profile_size, )
The arc curves
See also
wildboar.distance.matrix_profile
compute the matrix profile
References
- Gharghabi, Shaghayegh, et al. (2017)
Matrix profile VIII: domain agnostic online semantic segmentation at superhuman performance levels. In proceedings of International Conference on Data Mining