wildboar.datasets.preprocess
#
Utilities for preprocessing time series.
Module Contents#
Functions#
|
Scale each time series by its maximum absolute value. |
|
Scale x along the time dimension. |
|
Get a named preprocessor. |
|
Scale x along the time dimension. |
|
Truncate x to the shortest sequence. |
- wildboar.datasets.preprocess.maxabs_scale(x)[source]#
Scale each time series by its maximum absolute value.
- Parameters:
- xndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The samples.
- Returns:
- ndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The transformed samples.
- wildboar.datasets.preprocess.minmax_scale(x, min=0, max=1)[source]#
Scale x along the time dimension.
Each time series is scaled such that each value is between min and max.
- Parameters:
- xndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The samples.
- minfloat, optional
The minimum value.
- maxfloat, optional
The maximum value.
- Returns:
- ndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The transformed samples.
- wildboar.datasets.preprocess.named_preprocess(name)[source]#
Get a named preprocessor.
- Parameters:
- namestr
The name of the preprocessor.
- Returns:
- callable
The preprocessor function.
- wildboar.datasets.preprocess.standardize(x)[source]#
Scale x along the time dimension.
The resulting array will have zero mean and unit standard deviation.
- Parameters:
- xndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The samples.
- Returns:
- ndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The standardized samples.
- wildboar.datasets.preprocess.truncate(x, n_shortest=None)[source]#
Truncate x to the shortest sequence.
- Parameters:
- xndarray of shape (n_samples, n_timestep) or (n_samples, n_dims, n_timestep)
The samples.
- n_shortestint, optional
The maximum size.
- Returns:
- ndarray of shape (n_samples, n_shortest) or (n_samples, n_dims, n_shortest)
The truncated samples.