wildboar.utils
#
Utility functions.
Submodules#
Package Contents#
Functions#
|
Check both X and y. |
|
Input validation on time-series. |
- wildboar.utils.check_X_y(x, y, *, dtype=float, order='C', copy=False, ensure_2d=True, ensure_ts_array=False, allow_3d=False, allow_nd=False, force_all_finite=True, multi_output=False, ensure_min_samples=1, ensure_min_timesteps=1, ensure_min_dims=1, allow_eos=False, y_numeric=False, y_contiguous=True, estimator=None)[source]#
Check both X and y.
- Parameters:
- xarray-like
The samples.
- yarray-like
The labels.
- dtypedtype, optional
The data type for X.
- order{“C”, “F”}, optional
The order of data in memory.
- copybool, optional
Force a copy of X.
- ensure_2dbool, optional
Ensure that the array is 2d, i.e., (n_samples, n_timesteps).
- ensure_ts_arraybool, optional
Ensure that the array is a valid time series array.
- allow_3dbool, optional
Allow X to be 3d, i.e., (n_samples, n_dimensions, n_timesteps).
- allow_ndbool, optional
Allow X to have 2 or more dimensions.
- force_all_finitebool, optional
Require every value in X to be finite.
- multi_outputbool, optional
Allow y to be a multi output array.
- ensure_min_samplesint, optional
Require X to have at least this many samples.
- ensure_min_timestepsint, optional
Require X to have at least this many timesteps.
- ensure_min_dimsint, optional
Require X to have at least this many dimensions.
- allow_eosbool, optional
Allow X to be of variale length.
- y_numericbool, optional
Ensure that y is numeric with dtype float.
- y_contiguousbool, optional
Ensure that y is memory contiguous.
- estimatorobject, optional
An estimator object for error reporting.
- Returns:
- Xndarray
The validated array X.
- yndarray
The validated array y.
- wildboar.utils.check_array(array, *, dtype='numeric', order='C', copy=False, ravel_1d=False, ensure_2d=True, ensure_ts_array=False, allow_3d=False, allow_nd=False, allow_eos=False, force_all_finite=True, ensure_min_samples=1, ensure_min_timesteps=1, ensure_min_dims=1, estimator=None, input_name='')[source]#
Input validation on time-series.
Delegate array validation to scikit-learn
sklearn.utils.validation.check_array
with wildboar defaults and conventions.we optionally allow end-of-sequence identifiers
by default we convert arrays to c-order
we optionally specifically allow for 3d-arrays
we never allow for sparse arrays
By default, the input is checked to be a non-empty 2D array in c-order containing only finite values, with at least 1 sample, 1 timestep and 1 dimension. If the dtype of the array is object, attempt converting to float, raising on failure.
- Parameters:
- arrayobject
Input object to check / convert.
- dtype‘numeric’, type, list of type or None, optional
Data type of result. If None, the dtype of the input is preserved. If “numeric”, dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list.
- order{‘F’, ‘C’, ‘T’} or None, optional
Whether an array will be forced to be fortran or c-style. When order is None, then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array.
- copybool, optional
Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion.
- ravel_1dbool, optional
Whether to ravel 1d arrays or column vectors, it the array is neither an error is raised.
- ensure_2dbool, optional
Whether to raise a value error if array is not 2D.
- allow_3dbool, optional
Whether to allow array.ndim == 3.
- allow_ndbool, optional
Whether to allow array.ndim > 2.
- allow_eosbool, optional
Whether to raise an error on wildboar.utils.variable_len.eos in the array.
- force_all_finitebool or ‘allow-nan’, default=True
Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are:
True: Force all values of array to be finite.
False: accepts np.inf, np.nan, pd.NA in array.
‘allow-nan’: accepts only np.nan and pd.NA values in array. Values cannot be infinite.
- ensure_min_samplesint, optional
Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check.
- ensure_min_timestepsint, optional
Make sure that the 2D array has some minimum number of timesteps (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and
ensure_2d
is True. Setting to 0 disables this check.- ensure_min_dimsint, optional
Make sure that the array has a minimum number of dimensions. Setting to 0 disables this check.
- estimatorstr or estimator instance, default=None
If passed, include the name of the estimator in warning messages.
- input_namestr, default=””
The data name used to construct the error message.
- Returns:
- object
The converted and validated array.